3 research outputs found

    Decoding Task-Based fMRI Data Using Graph Neural Networks, Considering Individual Differences

    Get PDF
    Functional magnetic resonance imaging (fMRI) is a non-invasive technology that provides high spatial resolution in determining the human brain\u27s responses and measures regional brain activity through metabolic changes in blood oxygen consumption associated with neural activity. Task fMRI provides an opportunity to analyze the working mechanisms of the human brain during specific task performance. Over the past several years, a variety of computational methods have been proposed to decode task fMRI data that can identify brain regions associated with different task stimulations. Despite the advances made by these methods, several limitations exist due to graph representations and graph embeddings transferred from task fMRI signals. In the present study, we proposed an end-to-end graph convolutional network by combining the convolutional neural network with graph representation, with three convolutional layers to classify task fMRI data from the Human Connectome Project (302 participants, 22–35 years of age). One goal of this dissertation was to improve classification performance. We applied four of the most widely used node embedding algorithms—NetMF, RandNE, Node2Vec, and Walklets—to automatically extract the structural properties of the nodes in the brain functional graph, then evaluated the performance of the classification model. The empirical results indicated that the proposed GCN framework accurately identified the brain\u27s state in task fMRI data and achieved comparable macro F1 scores of 0.978 and 0.976 with the NetMF and RandNE embedding methods, respectively. Another goal of the dissertation was to assess the effects of individual differences (i.e., gender and fluid intelligence) on classification performance. We tested the proposed GCN framework on sub-datasets divided according to gender and fluid intelligence. Experimental results indicated significant differences in the classification predictions of gender, but not high/low fluid intelligence fMRI data. Our experiments yielded promising results and demonstrated the superior ability of our GCN in modeling task fMRI data

    A study of the effects of the COVID-19 pandemic on the experience of back pain reported on Twitter® in the United States : a natural language processing approach

    Get PDF
    The COVID-19 pandemic has changed our lifestyles, habits, and daily routine. Some of the impacts of COVID-19 have been widely reported already. However, many effects of the COVID-19 pandemic are still to be discovered. The main objective of this study was to assess the changes in the frequency of reported physical back pain complaints reported during the COVID-19 pandemic. In contrast to other published studies, we target the general population using Twitter as a data source. Specifically, we aim to investigate differences in the number of back pain complaints between the pre-pandemic and during the pandemic. A total of 53,234 and 78,559 tweets were analyzed for November 2019 and November 2020, respectively. Because Twitter users do not always complain explicitly when they tweet about the experience of back pain, we have designed an intelligent filter based on natural language processing (NLP) to automatically classify the examined tweets into the back pain complaining class and other tweets. Analysis of filtered tweets indicated an 84% increase in the back pain complaints reported in November 2020 compared to November 2019. These results might indicate significant changes in lifestyle during the COVID-19 pandemic, including restrictions in daily body movements and reduced exposure to routine physical exercise

    Decoding Task-Based fMRI Data with Graph Neural Networks, Considering Individual Differences

    No full text
    Task fMRI provides an opportunity to analyze the working mechanisms of the human brain during specific experimental paradigms. Deep learning models have increasingly been applied for decoding and encoding purposes study to representations in task fMRI data. More recently, graph neural networks, or neural networks models designed to leverage the properties of graph representations, have recently shown promise in task fMRI decoding studies. Here, we propose an end-to-end graph convolutional network (GCN) framework with three convolutional layers to classify task fMRI data from the Human Connectome Project dataset. We compared the predictive performance of our GCN model across four of the most widely used node embedding algorithms—NetMF, RandNE, Node2Vec, and Walklets—to automatically extract the structural properties of the nodes in the functional graph. The empirical results indicated that our GCN framework accurately predicted individual differences (0.978 and 0.976) with the NetMF and RandNE embedding methods, respectively. Furthermore, to assess the effects of individual differences, we tested the classification performance of the model on sub-datasets divided according to gender and fluid intelligence. Experimental results indicated significant differences in the classification predictions of gender, but not high/low fluid intelligence fMRI data. Our experiments yielded promising results and demonstrated the superior ability of our GCN in modeling task fMRI data
    corecore